| |

Craxme.com

 Forgot password?
 Register
Author: allinrana
Collapse the left

[Articles & News] Our Solar System..... (Updated)

 Close [Copy link]
Post time: 1-10-2017 23:12:53
| Show all posts
amazing
sun is white in color
Reply

Use magic Report

Post time: 2-10-2017 05:24:15
| Show all posts
Amazing information at one place. Thnx
Reply

Use magic Report

Post time: 2-10-2017 11:10:45
| Show all posts
Awesome Information, Well done.
Can some body help me to convert this thread in PDF so that I can give it to my son for reading the same
Reply

Use magic Report

Post time: 2-10-2017 12:42:17
| Show all posts
Bro i am a big fan of space scince, so i just read the 1st page nd 2nd page i read after college. It interesting.
Reply

Use magic Report

Post time: 2-10-2017 13:03:11
| Show all posts
Nice information!!
Reply

Use magic Report

 Author| Post time: 13-10-2017 02:53:32
| Show all posts
Edited by allinrana at 13-10-2017 03:08 AM

Planet 4. Mars





Mars is the fourth planet from the Sun and the seventh largest:

      orbit:        227,940,000 km (1.52 AU) from Sun

      diameter:   6,794 km
      mass:        6.4219e23 kg

Mars (Greek: Ares) is the god of War. The planet probably got this name due to its red color; Mars is sometimes referred to as the Red Planet. (An interesting side note: the Roman god Mars was a god of agriculture before becoming associated with the Greek Ares; those in favor of colonizing and terraforming Mars may prefer this symbolism.) The name of the month March derives from Mars.


Mars has been known since prehistoric times. Of course, it has been extensively studied with ground-based observatories. But even very large telescopes find Mars a difficult target, it's just too small. It is still a favorite of science fiction writers as the most favorable place in the Solar System (other than Earth!) for human habitation. But the famous "canals" "seen" by Lowell and others were, unfortunately, just as imaginary as Barsoomian princesses.

Viking 2 Landing Site  Pathfinder Landing Site The first spacecraft to visit Mars was Mariner 4 in 1965. Several others followed including Mars 2, the first spacecraft to land on Mars and the two Viking landers in 1976. Ending a long 20 year hiatus, Mars Pathfinder landed successfully on Mars on 1997 July 4. In 2004 the Mars Expedition Rovers "Spirit" and "Opportunity" landed on Mars sending back geologic data and many pictures; they are still operating after more than three years on Mars. In 2008, Phoenix landed in the northern plains to search for water. Three Mars orbiters (Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express) are also currently in operation.


Mars' orbit is significantly elliptical. One result of this is a temperature variation of about 30 C at the subsolar point between aphelion and perihelion. This has a major influence on Mars' climate. While the average temperature on Mars is about 218 K (-55 C, -67 F), Martian surface temperatures range widely from as little as 140 K (-133 C, -207 F) at the winter pole to almost 300 K (27 C, 80 F) on the day side during summer.


Though Mars is much smaller than Earth, its surface area is about the same as the land surface area of Earth.


Olympus Mons Mars has some of the most highly varied and interesting terrain of any of the terrestrial planets, some of it quite spectacular:


Olympus Mons: the largest mountain in the Solar System rising 24 km (78,000 ft.) above the surrounding plain. Its base is more than 500 km in diameter and is rimmed by a cliff 6 km (20,000 ft) high.

Tharsis: a huge bulge on the Martian surface that is about 4000 km across and 10 km high.

Valles Marineris: a system of canyons 4000 km long and from 2 to 7 km deep (top of page);

Hellas Planitia: an impact crater in the southern hemisphere over 6 km deep and 2000 km in diameter.

Much of the Martian surface is very old and cratered, but there are also much younger rift valleys, ridges, hills and plains. (None of this is visible in any detail with a telescope, even the Hubble Space Telescope; all this information comes from the spacecraft that we've sent to Mars.)


Southern Highlands The southern hemisphere of Mars is predominantly ancient cratered highlands somewhat similar to the Moon. In contrast, most of the northern hemisphere consists of plains which are much younger, lower in elevation and have a much more complex history. An abrupt elevation change of several kilometers seems to occur at the boundary. The reasons for this global dichotomy and abrupt boundary are unknown (some speculate that they are due to a very large impact shortly after Mars' accretion). Mars Global Surveyor has produced a nice 3D map of Mars that clearly shows these features.


The interior of Mars is known only by inference from data about the surface and the bulk statistics of the planet. The most likely scenario is a dense core about 1700 km in radius, a molten rocky mantle somewhat denser than the Earth's and a thin crust. Data from Mars Global Surveyor indicates that Mars' crust is about 80 km thick in the southern hemisphere but only about 35 km thick in the north. Mars' relatively low density compared to the other terrestrial planets indicates that its core probably contains a relatively large fraction of sulfur in addition to iron (iron and iron sulfide).


Like Mercury and the Moon, Mars appears to lack active plate tectonics at present; there is no evidence of recent horizontal motion of the surface such as the folded mountains so common on Earth. With no lateral plate motion, hot-spots under the crust stay in a fixed position relative to the surface. This, along with the lower surface gravity, may account for the Tharis bulge and its enormous volcanoes. There is no evidence of current volcanic activity. However, data from Mars Global Surveyor indicates that Mars very likely did have tectonic activity sometime in the past.


Valley Network There is very clear evidence of erosion in many places on Mars including large floods and small river systems. At some time in the past there was clearly some sort of fluid on the surface. Liquid water is the obvious fluid but other possibilities exist. There may have been large lakes or even oceans; the evidence for which was strenghtened by some very nice images of layered terrain taken by Mars Global Surveyor and the mineralology results from MER Opportunity. Most of these point to wet episodes that occurred only briefly and very long ago; the age of the erosion channels is estimated at about nearly 4 billion years. However, images from Mars Express released in early 2005 show what appears to be a frozen sea that was liquid very recently (maybe 5 million years ago). Confirmation of this interpretation would be a very big deal indeed! (Valles Marineris was NOT created by running water. It was formed by the stretching and cracking of the crust associated with the creation of the Tharsis bulge.)


Early in its history, Mars was much more like Earth. As with Earth almost all of its carbon dioxide was used up to form carbonate rocks. But lacking the Earth's plate tectonics, Mars is unable to recycle any of this carbon dioxide back into its atmosphere and so cannot sustain a significant greenhouse effect. The surface of Mars is therefore much colder than the Earth would be at that distance from the Sun.


Mars has a very thin atmosphere composed mostly of the tiny amount of remaining carbon dioxide (95.3%) plus nitrogen (2.7%), argon (1.6%) and traces of oxygen (0.15%) and water (0.03%). The average pressure on the surface of Mars is only about 7 millibars (less than 1% of Earth's), but it varies greatly with altitude from almost 9 millibars in the deepest basins to about 1 millibar at the top of Olympus Mons. But it is thick enough to support very strong winds and vast dust storms that on occasion engulf the entire planet for months. Mars' thin atmosphere produces a greenhouse effect but it is only enough to raise the surface temperature by 5 degrees (K); much less than what we see on Venus and Earth.


South Polar Cap Early telescopic observations revealed that Mars has permanent ice caps at both poles; they're visible even with a small telescope. We now know that they're composed of water ice and solid carbon dioxide ("dry ice"). The ice caps exhibit a layered structure with alternating layers of ice with varying concentrations of dark dust. In the northern summer the carbon dioxide completely sublimes, leaving a residual layer of water ice. ESA's Mars Express has shown that a similar layer of water ice exists below the southern cap as well. The mechanism responsible for the layering is unknown but may be due to climatic changes related to long-term changes in the inclination of Mars' equator to the plane of its orbit. There may also be water ice hidden below the surface at lower latitudes. The seasonal changes in the extent of the polar caps changes the global atmospheric pressure by about 25% (as measured at the Viking lander sites).


Mars by HST Recent observations with the Hubble Space Telescope have revealed that the conditions during the Viking missions may not have been typical. Mars' atmosphere now seems to be both colder and dryer than measured by the Viking landers (more details from STScI).


The Viking landers performed experiments to determine the existence of life on Mars. The results were somewhat ambiguous but most scientists now believe that they show no evidence for life on Mars (there is still some controversy, however). Optimists point out that only two tiny samples were measured and not from the most favorable locations. More experiments will be done by future missions to Mars.


A small number of meteorites (the SNC meteorites) are believed to have originated on Mars.


On 1996 Aug 6, David McKay et al announced what they thought might be evidence of ancient Martian microorganisms in the meteorite ALH84001. Though there is still some controversy, the majority of the scientific community has not accepted this conclusion. If there is or was life on Mars, we still haven't found it.


Large, but not global, weak magnetic fields exist in various regions of Mars. This unexpected finding was made by Mars Global Surveyor just days after it entered Mars orbit. They are probably remnants of an earlier global field that has since disappeared. This may have important implications for the structure of Mars' interior and for the past history of its atmosphere and hence for the possibility of ancient life.


When it is in the nighttime sky, Mars is easily visible with the unaided eye. Mars is a difficult but rewarding target for an amateur telescope though only for the three or four months each martian year when it is closest to Earth. Its apparent size and brightness varies greatly according to its relative position to the Earth. There are several Web sites that show the current position of Mars (and the other planets) in the sky.


The Mars Orbiter Mission probe lifted-off from the First Launch Pad at Satish Dhawan Space Centre (Sriharikota Range SHAR), Andhra Pradesh, using a Polar Satellite Launch Vehicle (PSLV) rocket C25 at 09:08 UTC on 5 November 2013. The launch window was approximately 20 days long and started on 28 October 2013. The MOM probe spent about a month in Earth orbit, where it made a series of seven apogee-raising orbital manoeuvres before trans-Mars injection on 30 November 2013 (UTC). After a 298-day transit to Mars, it was successfully inserted into Mars orbit on 24 September 2014.



Reply

Use magic Report

 Author| Post time: 13-10-2017 03:01:46
| Show all posts
Edited by allinrana at 13-10-2017 03:06 AM

Satellites of Mars : Phobos & Deimos

1. Phobos



Phobos ("FOH bus") is the larger and innermost of Mars' two moons. Phobos is closer to its primary than any other moon in the solar system, less than 6000 km above the surface of Mars. It is also one of the smallest moons in the solar system.
        orbit:         9378 km from the center of Mars
        diameter:    22.2 km (27 x 21.6 x 18.Cool
        mass:         1.08e16 kg

In Greek mythology, Phobos is one of the sons of Ares (Mars) and Aphrodite (Venus). "phobos" is Greek for "fear" (the root of "phobia").

Discovered 1877 August 18 by Hall; photographed by Mariner 9 in 1971, Viking 1 in 1977, and Phobos in 1988.
Phobos orbits Mars below the synchronous orbit radius. Thus it rises in the west, moves very rapidly across the sky and sets in the east, usually twice a day. It is so close to the surface that it cannot be seen above the horizon from all points on the surface of Mars.

And Phobos is doomed: because its orbit is below synchronous altitude tidal forces are lowering its orbit (current rate: about 1.8 meters per century). In about 50 million years it will either crash onto the surface of Mars or (more likely) break up into a ring. (This is the opposite effect to that operating to raise the orbit of the Moon.)

Phobos and Deimos may be composed of carbon-rich rock like C-type asteroids. But their densities are so low that they cannot be pure rock. They are more likely composed of a mixture of rock and ice. Both are heavily cratered. New images from Mars Global Surveyor indicate that Phobos is covered with a layer of fine dust about a meter thick, similar to the regolith on the Earth's Moon.

The Soviet spacecraft Phobos 2 detected a faint but steady outgassing from Phobos. Unfortunately, Phobos 2 died before it could determine the nature of the material; water is the best bet. Phobos 2 also returned a few images (right).

The most prominent feature on Phobos is the large crater named Stickney, the maiden name of Hall's wife (above). Like Mimas' crater Herschel (on a smaller scale) the impact that created Stickney must have almost shattered Phobos. The grooves and streaks on the surface were probably also caused by the Stickney impact.

Phobos and Deimos are widely believed to be captured asteroids. There is some speculation that they originated in the outer solar system rather than in the main asteroid belt.

Phobos and Deimos may someday be useful as "space stations" from which to study Mars or as intermediate stops to and from the Martian surface; especially if the presence of ice is confirmed.


2. Deimos



Deimos ("DEE mos") is the smaller and outermost of Mars' two moons. It is one of the smallest known moons in the solar system.

         orbit:         23,459 km from Mars
         diameter:   12.6 km (15 x 12.2 x 11)
         mass:        1.8e15 kg

In Greek mythology, Deimos is one of the sons of Ares (Mars) and Aphrodite (Venus); "deimos" is Greek for "panic".

Discovered 1877 August 12 by Hall, photographed by Viking 1 in 1977.

Deimos and Phobos are composed of carbon-rich rock like C-type asteroids and ice. Both are heavily cratered.

Deimos and Phobos are probably asteroids perturbed by Jupiter into orbits that allowed them to be captured by Mars.


Reply

Use magic Report

 Author| Post time: 13-10-2017 03:11:49
| Show all posts
Planet 5. Jupiter




Jupiter is the fifth planet from the Sun and by far the largest. Jupiter is more than twice as massive as all the other planets combined (the mass of Jupiter is 318 times that of Earth).


        orbit:        778,330,000 km (5.20 AU) from Sun
        diameter:   142,984 km (equatorial)
        mass:        1.900e27 kg

Jupiter (a.k.a. Jove; Greek Zeus) was the King of the Gods, the ruler of Olympus and the patron of the Roman state. Zeus was the son of Cronus (Saturn).


Jupiter is the fourth brightest object in the sky (after the Sun, the Moon and Venus). It has been known since prehistoric times as a bright "wandering star". But in 1610 when Galileo first pointed a telescope at the sky he discovered Jupiter's four large moons Io, Europa, Ganymede and Callisto (now known as the Galilean moons) and recorded their motions back and forth around Jupiter. This was the first discovery of a center of motion not apparently centered on the Earth. It was a major point in favor of Copernicus's heliocentric theory of the motions of the planets (along with other new evidence from his telescope: the phases of Venus and the mountains on the Moon). Galileo's outspoken support of the Copernican theory got him in trouble with the Inquisition. Today anyone can repeat Galileo's observations (without fear of retribution :-) using binoculars or an inexpensive telescope.


Jupiter was first visited by Pioneer 10 in 1973 and later by Pioneer 11, Voyager 1, Voyager 2 and Ulysses. The spacecraft Galileo orbited Jupiter for eight years. It is still regularly observed by the Hubble Space Telescope.


The gas planets do not have solid surfaces, their gaseous material simply gets denser with depth (the radii and diameters quoted for the planets are for levels corresponding to a pressure of 1 atmosphere). What we see when looking at these planets is the tops of clouds high in their atmospheres (slightly above the 1 atmosphere level).


Jupiter is about 90% hydrogen and 10% helium (by numbers of atoms, 75/25% by mass) with traces of methane, water, ammonia and "rock". This is very close to the composition of the primordial Solar Nebula from which the entire solar system was formed. Saturn has a similar composition, but Uranus and Neptune have much less hydrogen and helium.


Our knowledge of the interior of Jupiter (and the other gas planets) is highly indirect and likely to remain so for some time. (The data from Galileo's atmospheric probe goes down only about 150 km below the cloud tops.)


Jupiter probably has a core of rocky material amounting to something like 10 to 15 Earth-masses.


Above the core lies the main bulk of the planet in the form of liquid metallic hydrogen. This exotic form of the most common of elements is possible only at pressures exceeding 4 million bars, as is the case in the interior of Jupiter (and Saturn). Liquid metallic hydrogen consists of ionized protons and electrons (like the interior of the Sun but at a far lower temperature). At the temperature and pressure of Jupiter's interior hydrogen is a liquid, not a gas. It is an electrical conductor and the source of Jupiter's magnetic field. This layer probably also contains some helium and traces of various "ices".


The outermost layer is composed primarily of ordinary molecular hydrogen and helium which is liquid in the interior and gaseous further out. The atmosphere we see is just the very top of this deep layer. Water, carbon dioxide, methane and other simple molecules are also present in tiny amounts.


Recent experiments have shown that hydrogen does not change phase suddenly. Therefore the interiors of the jovian planets probably have indistinct boundaries between their various interior layers.


Three distinct layers of clouds are believed to exist consisting of ammonia ice, ammonium hydrosulfide and a mixture of ice and water. However, the preliminary results from the Galileo probe show only faint indications of clouds (one instrument seems to have detected the topmost layer while another may have seen the second). But the probe's entry point (left) was unusual -- Earth-based telescopic observations and more recent observations by the Galileo orbiter suggest that the probe entry site may well have been one of the warmest and least cloudy areas on Jupiter at that time.


Data from the Galileo atmospheric probe also indicate that there is much less water than expected. The expectation was that Jupiter's atmosphere would contain about twice the amount of oxygen (combined with the abundant hydrogen to make water) as the Sun. But it now appears that the actual concentration much less than the Sun's. Also surprising was the high temperature and density of the uppermost parts of the atmosphere.


Jupiter and the other gas planets have high velocity winds which are confined in wide bands of latitude. The winds blow in opposite directions in adjacent bands. Slight chemical and temperature differences between these bands are responsible for the colored bands that dominate the planet's appearance. The light colored bands are called zones; the dark ones belts. The bands have been known for some time on Jupiter, but the complex vortices in the boundary regions between the bands were first seen by Voyager. The data from the Galileo probe indicate that the winds are even faster than expected (more than 400 mph) and extend down into as far as the probe was able to observe; they may extend down thousands of kilometers into the interior. Jupiter's atmosphere was also found to be quite turbulent. This indicates that Jupiter's winds are driven in large part by its internal heat rather than from solar input as on Earth.


The vivid colors seen in Jupiter's clouds are probably the result of subtle chemical reactions of the trace elements in Jupiter's atmosphere, perhaps involving sulfur whose compounds take on a wide variety of colors, but the details are unknown.


The colors correlate with the cloud's altitude: blue lowest, followed by browns and whites, with reds highest. Sometimes we see the lower layers through holes in the upper ones.


The Great Red Spot (GRS) has been seen by Earthly observers for more than 300 years (its discovery is usually attributed to Cassini, or Robert Hooke in the 17th century). The GRS is an oval about 12,000 by 25,000 km, big enough to hold two Earths. Other smaller but similar spots have been known for decades. Infrared observations and the direction of its rotation indicate that the GRS is a high-pressure region whose cloud tops are significantly higher and colder than the surrounding regions. Similar structures have been seen on Saturn and Neptune. It is not known how such structures can persist for so long.


Jupiter radiates more energy into space than it receives from the Sun. The interior of Jupiter is hot: the core is probably about 20,000 K. The heat is generated by the Kelvin-Helmholtz mechanism, the slow gravitational compression of the planet. (Jupiter does NOT produce energy by nuclear fusion as in the Sun; it is much too small and hence its interior is too cool to ignite nuclear reactions.) This interior heat probably causes convection deep within Jupiter's liquid layers and is probably responsible for the complex motions we see in the cloud tops. Saturn and Neptune are similar to Jupiter in this respect, but oddly, Uranus is not.


Jupiter is just about as large in diameter as a gas planet can be. If more material were to be added, it would be compressed by gravity such that the overall radius would increase only slightly. A star can be larger only because of its internal (nuclear) heat source. (But Jupiter would have to be at least 80 times more massive to become a star.)


Jupiter has a huge magnetic field, much stronger than Earth's. Its magnetosphere extends more than 650 million km (past the orbit of Saturn!). (Note that Jupiter's magnetosphere is far from spherical -- it extends "only" a few million kilometers in the direction toward the Sun.) Jupiter's moons therefore lie within its magnetosphere, a fact which may partially explain some of the activity on Io. Unfortunately for future space travelers and of real concern to the designers of the Voyager and Galileo spacecraft, the environment near Jupiter contains high levels of energetic particles trapped by Jupiter's magnetic field. This "radiation" is similar to, but much more intense than, that found within Earth's Van Allen belts. It would be immediately fatal to an unprotected human being.
    The Galileo atmospheric probe discovered a new intense radiation belt between Jupiter's ring and the uppermost atmospheric layers. This new belt is approximately 10 times as strong as Earth's Van Allen radiation belts. Surprisingly, this new belt was also found to contain high energy helium ions of unknown origin.


Jupiter has rings like Saturn's, but much fainter and smaller (right). They were totally unexpected and were only discovered when two of the Voyager 1 scientists insisted that after traveling 1 billion km it was at least worth a quick look to see if any rings might be present. Everyone else thought that the chance of finding anything was nil, but there they were. It was a major coup. They have since been imaged in the infra-red from ground-based observatories and by Galileo.


Unlike Saturn's, Jupiter's rings are dark (albedo about .05). They're probably composed of very small grains of rocky material. Unlike Saturn's rings, they seem to contain no ice.


Particles in Jupiter's rings probably don't stay there for long (due to atmospheric and magnetic drag). The Galileo spacecraft found clear evidence that the rings are continuously resupplied by dust formed by micrometeor impacts on the four inner moons, which are very energetic because of Jupiter's large gravitational field. The inner halo ring is broadened by interactions with Jupiter's magnetic field.


In July 1994, Comet Shoemaker-Levy 9 collided with Jupiter with spectacular results (left). The effects were clearly visible even with amateur telescopes. The debris from the collision was visible for nearly a year afterward with HST.


When it is in the nighttime sky, Jupiter is often the brightest "star" in the sky (it is second only to Venus, which is seldom visible in a dark sky). The four Galilean moons are easily visible with binoculars; a few bands and the Great Red Spot can be seen with a small astronomical telescope.



Reply

Use magic Report

Post time: 17-10-2017 17:38:44
| Show all posts
nice exhausted information about solar system, thanx for share
Reply

Use magic Report

You have to log in before you can reply Login | Register

Points Rules

Mobile|Dark room|Forum

9-6-2025 05:42 PM GMT+5.5

Powered by Discuz! X3.4

Copyright © 2001-2025, Tencent Cloud.

MultiLingual version, Release 20211022, Rev. 1662, © 2009-2025 codersclub.org

Quick Reply To Top Return to the list